Mill and Hawksbill Creek TMDL Implementation Plan: A Plan to Reduce Bacteria in the Mill and Hawksbill Creek Watersheds Prepared for: Virginia Department of Conservation and Recreation Submitted September 13, 2007 Submitted by: MapTech, Inc., 3154 State Street, Blacksburg A 24060 ## **Table of Contents** | Table of Contents | i | |------------------------------------------|----| | Introduction | 1 | | Review of the TMDL Development Study | 3 | | Process for Public Participation | 6 | | Assessment of Needs | 6 | | Implementation | 11 | | Targeting | 13 | | Cost / Benefit Analysis | 16 | | Monitoring | 20 | | Education | 23 | | Stakeholders' Roles and Responsibilities | 23 | | List of Acronyms | 26 | | Final Public Meeting Presentation | 27 | ### Introduction The Federal Clean Water Act (CWA) that became law in 1972 requires that all U.S. streams, rivers, and lakes meet certain water quality standards. The CWA also requires that states conduct monitoring to identify polluted waters or those that do not meet standards. Through this required program, the state of Virginia has found that many stream segments do not meet state water quality standards for protection of the five beneficial uses: fishing, swimming, shellfish, aquatic life (benthic), and drinking. When a stream fails to meet the standards, it is listed as impaired on the CWA's Section 303(d) list. Hawksbill Creek (VAV-B39R-02) was listed as impaired on Virginia's 1998 303(d) Total Maximum Daily Load Priority List and Report (VADEQ, 1998) due to violations of the State's water quality standards for fecal coliform. This standard was changed to E. coli in 2003 because there is stronger correlation between concentrations of E. coli bacteria and incidence of gastrointestinal illness than there is with fecal coliform. The impaired segment of Hawksbill Creek began at the confluence with Chub Run and continued downstream to the confluence with the South Fork Shenandoah River (9.40 miles). In the 2004 Total Maximum Daily Load Priority List and Report the segment was modified to include the area between the East Hawksbill Creek confluence upstream to its headwaters (12.26 miles). In the 2006 305(b)/303(d) Water Quality Assessment Integrated Report Hawksbill Creek was listed as impaired from its headwaters downstream to its confluence with the South Fork Shenandoah River (19.3 miles). The modified listing was based on violations of the new E. coli water quality standard. (Figure 1) Mill Creek (VAV-B38R-01) was listed as impaired on Virginia's 1998 303(d) Total Maximum Daily Load Priority List and Report (VADEQ, 1998) due to violations of the State's water quality standards for fecal coliform (the standard was changed to E. coli in 2003). The impaired segment includes Mill Creek from the headwaters to the confluence with the South Fork Shenandoah River (6.78 miles). The impairment listing remained on subsequent reports in 2002, 2004 and 2006. (Figure 1) Hawksbill Creek and Mill Creek are part of the Shenandoah River Basin. The Mill Creek and Hawksbill Creek watersheds are located within USGS hydrologic unit code 02070005. The Mill Creek watershed is approximately 8,178 acres. The Hawksbill Creek watershed is approximately 56,951 acres. **Figure 1.** The impaired segments of Hawksbill Creek and Mill Creek The CWA and the U.S. Environmental Protection Agency (EPA) (40 CFR Part 130) both require that states develop a Total Maximum Daily Load (TMDL) for each pollutant. A TMDL is a "pollution budget" for a stream. That is, it sets limits on the amount of pollution that a stream can tolerate and still maintain water quality standards. A TMDL accounts for seasonal variations and must include a margin of safety (MOS). The TMDL process includes 3 different steps after a stream is listed on the impaired waters or 303(d) list. The first step is to conduct a TMDL study. The TMDL study results are explained in the Review of the TMDL Development Study section of this booklet. Once a TMDL is developed and approved by the EPA and the State Water Control Board (SWCB), measures must be taken to reduce pollution levels in the stream. The second step in the process is the development of an Implementation Plan (IP), which has now been completed for the Mill and Hawksbill Creek watersheds. This plan outlines how the TMDL goals can be accomplished in the watersheds (drainage areas) with the impaired streams. The IP describes control measures, which can include the use of better treatment technology and the installation of best management practices (BMPs), to be implemented in a staged process. This booklet summarizes the IP for the E. coli impairment in Hawksbill Creek and Mill Creek. In fulfilling the state's requirement for the development of an Implementation Plan, a framework has been established for reducing E. coli levels, and achieving the water quality goals for the Hawksbill Creek and Mill Creek impaired segments. With successful completion of the IP, we continue on to the third step in the TMDL process to meet these water quality goals, which is implementation of the plan. Approval of the IP will increase the opportunities for funding during implementation, and will provide residents of the Mill and Hawksbill watersheds with a guide to improve water quality in their community and enhance their natural resources. The implementation of this plan will reduce levels of bacteria in Mill and Hawksbill Creek and their tributaries. The benefits of the implementation of this plan are described in detail in the Cost/Benefit Analysis chapter of this document. In short, the implementation of this plan may provide benefits to homeowners and farmers, as well as those that wish to swim in these creeks. This booklet is an abbreviated version of the full IP report, which can be obtained by contacting the Virginia Department of Environmental Quality (VADEQ) or the Virginia Department of Conservation and Recreation (VADCR) offices. Agency contact information can be found on the back of this pamphlet. Key components of the implementation plan are discussed in the following sections: | Review of the TMDL Development Study | |--------------------------------------| | Process for Public Participation | | Assessment of Needs | | Implementation, and | | Cost/Benefit Analysis | | | ## **Review of the TMDL Development Study** Hawksbill Creek and Mill Creek watersheds are located in Page County, Virginia. Additionally, Hawksbill Creek runs through the Town of Luray. The Department of Biological Systems Engineering from Virginia Tech was contracted to develop the E. coli bacteria TMDL for Mill Creek. George Mason University and Tetra Tech, Inc. prepared the E. coli TMDL for Hawksbill Creek. These TMDLs were approved in 2004 and 2005 respectively by the USEPA and are posted at www. deq.virginia.gov. The first step in developing the implementation plan was to review these TMDL studies. The results of the TMDL studies were used to determine the water quality goals and associated pollutant reductions that would need to be addressed in the implementation plan. In addition to performing analyses of fecal bacteria and E. coli concentrations for the TMDL, a water quality analysis method called Bacteria Source Tracking (BST) was performed on water samples from both Mill and Hawksbill Creeks. BST is intended to aid in identifying the sources of fecal contamination in water bodies (i.e., human, pets, livestock, or wildlife). The BST results provided insight into the likely sources of fecal contamination and the distribution of fecal bacteria in the creeks. Having this information will improve the chances for success in implementing solutions by allowing better targeting of the sources of bacteria in the watersheds. Figures 2 and 3 show the load weighted average BST results for Mill Creek and Hawksbill Creek respectively. These averages were calculated from the 12 monthly samples collected during TMDL development. The weighting process favors the values that are associated with highest E. coli concentrations because those concentrations often exceed the water quality standard and it is more important to know what the dominant sources of bacteria are when E. coli exceeds the water quality standard. A summary of the final E coli allocations for the different sources in the watersheds that resulted from the TMDL study is given in Table 1. The correction of straight pipes and failing septic systems are a requirement of the E. coli TMDL. In addition, the majority of livestock in both watersheds will need to be excluded from the creeks. Runoff carrying E. coli into the creeks after rain events must also be addressed. Reductions to wildlife fecal bacteria will not be addressed in this project. Rather, the objective of this plan will be to address those sources of bacteria that can be attributed to human activities including land use and natural resource management. These TMDL studies were conducted because Hawksbill and Mill Creeks were not meeting state water quality standards for the recreation use (swimming). In order to meet the water quality goals established by the TMDL studies, any water sample from the stream must be equal to or less than 235 colony forming units per 100 milliliters (cfu/100mL) at all times. Over all the samples collected within a 30 day period the geometric mean of this data must be equal or less than 126 cfu/100mL. **Figure 2.** Load weighted averages for fecal coliform concentrations and fecal sources conducted by VADEQ during development of the TMDL for Mill Creek at station 1BMLC000.40 **Figure 3.** Load weighted averages for fecal coliform concentrations and fecal sources conducted by VADEQ during development of the TMDL for Hawksbill Creek at station 1BHKS000.96 **Table 1.** Load reductions allocated during TMDL development for Mill Creek and Hawksbill Creek. | Impairment | Failed Septic<br>Systems and<br>Straight Pipes | Direct<br>Livestock | Nonpoint<br>Sources | Direct<br>Wildlife | |--------------------|------------------------------------------------|---------------------|---------------------|--------------------| | Mill Creek | 100% | 100% | 100% | 0% | | Hawksbill<br>Creek | 100% | 97% | 97% | 0% | <sup>\*</sup> A 40% reduction is required from forest lands which are primarily inhabited by wildlife. ## **Process for Public Participation** The actions and commitments described in this document are drawn together through input from citizens of the watershed, county government, the Page County Water Quality Advisory Committee, VADEQ, VADCR, Virginia Department of Health (VDH), Virginia Cooperative Extension (VCE), the Natural Resources Conservation Service (NRCS), Virginia Department of Forestry (VADOF), Shenandoah Valley Soil and Water Conservation District (SVSWCD), and MapTech, Inc. Every citizen and interested party in the watershed area is encouraged to become involved in the implementation process and contribute in any way that helps in restoring the health of the streams. Public participation took place on three levels. First, open meetings were held to inform the public of the end goals and status of the project. Second, specialized working groups were assembled to discuss specific implementation strategies for different sources of bacteria in the watersheds. The working groups included: residential/urban, agricultural and government.. Third, a Steering Committee was formed with representation from VADEQ, VADCR, VDH, SVSWCD, VADOF, the Page County Water Quality Advisory Committee, and representatives from the working groups. ### **Assessment of Needs: Recommended Actions** Agricultural BMPs Streamside fencing is one of the best ways to reduce bacteria levels in the stream. This will remove direct livestock defecation in the stream and prevent the trampling of the stream banks. The quantity of streamside fencing needed was determined through spatial analyses of land uses, the stream network, and archived data. Additionally, input from local agency representatives and citizens were used to verify the analyses. The length of fencing required on perennial streams in the Mill and Hawksbill Creek watersheds is approximately 30,752 and 108,076 feet respectively. In order to accomplish these goals, the state cost share program for agricultural best management practices (BMPs) was utilized in the implementation plan. The total fencing needed was divided up among the different BMPs offered through the state cost share program that included a fencing component. There are 10 Grazing Land Protection Systems (SL-6) and one Stream Protection System (WP-2T) needed to meet the livestock exclusion goal for Mill Creek. Thirty four Grazing Land Protection Systems (SL-6) and five Stream Protection System (WP-2T) are needed for Hawksbill Creek. Both the Grazing Land and Stream Protection practices include a 35-ft buffer component. These vegetated or forested buffers will provide an additional water quality benefit by trapping bacteria moving towards the streams through runoff. Therefore, these practices will provide some of the best water quality benefits in terms of reducing both direct (cows defecating in the stream) and land- based (runoff of manure into the stream during rain events) contributions of bacteria to the stream. The agricultural working group determined that the fencing practices offered through the state cost share program would not be practical in all cases in the watershed. In particular, areas where flooding occurs frequently, or areas where a 35-ft buffer is not possible were identified as problematic. The working group decided to include polywire fencing (no cost share) in the implementation plan in order to fully meet the fencing needs. This type of fencing could be replaced easily should flooding wash it out. In addition, since cost share would not be available for landowners who installed this type of fencing, a 35-ft buffer would not be required. A total of five polywire fencing systems are needed to meet the livestock exclusion goal for Mill Creek, while 19 are needed in Hawksbill Creek. Due to the large reductions needed on land-based loads of E. coli bacteria, additional BMPs for pasture and cropland are also needed. Estimates of all agricultural BMPs needed for Stage 1, the first five years (delisting from the 303(d) list) in the watershed are listed in Table 2. **Table 2.** Agricultural land based reduction BMPs required for delisting | Control Measure | Unit | Mill<br>Creek | Hawksbill<br>Creek | Total | |------------------------------------------------------|--------|---------------|--------------------|--------| | Improved Pasture Mgmt. | Acres | 3,940 | 10,809 | 14,749 | | Poultry Waste Storage<br>Facilities/ Composting Bins | System | 1 | 7 | 8 | | Manure Incorporation | Acres | 0 | 838 | 838 | | Vegetated Buffers: Cropland | Acres | 0 | 9 | 9 | ### Residential BMPs All failing septic systems and straight pipes must be identified and replaced during implementation since a 100% load reduction from direct and nonpoint source (NPS) human waste is required to meet the TMDL goals. In addition, straight pipes are illegal in the Commonwealth of Virginia. The estimated numbers of straight pipes and failing septic systems were reported in the TMDL studies and are shown in Table 3. **Table 3.** Estimated residential waste treatment systems in the Mill and Hawksbill Creek watersheds. | Watershed | Houses with<br>Standard Septic<br>Systems | Potential<br>Failing Septic<br>Systems | Potential<br>Straight Pipes | |--------------------|-------------------------------------------|----------------------------------------|-----------------------------| | Mill Creek | 242 | 51 | 6 | | Hawksbill<br>Creek | 2,329 | 92 | 12 | The Mill Creek and Hawksbill Creek TMDLs call for large reductions to land-based residential loads. In order to achieve these reductions, the BMPs in Table 4 must be implemented. The Pet Waste Program shown in the table includes distributing information on how pet waste should be disposed of, and installing pet waste stations at public parks like what is currently in place along the Hawksbill Greenway. An additional Pet Waste Composter program is also proposed to help eliminate pet waste in homeowner's yards instead of just in public places. The program includes the distribution of pet waste composters to households in the watersheds with pets. This could be accomplished through partnerships with local stores selling pet food, the Page County Animal Shelter and the SPCA. In order to encourage homeowners to properly maintain their septic systems, a septic tank pumpout program will be initiated. Information on septic system maintenance will be distributed in the watershed, encouraging homeowners to pump their septic tank out every 3-5 years. Additionally, financial assistance will be provided through cost share for homeowners to pump out their septic tanks. While there are not sufficient funds to assist every homeowner in the watersheds with a pumpout, it is expected that this program will raise local awareness and lead homeowners to assume responsibility for maintaining their systems. In turn, this will help to prevent septic system failures in the future. **Table 4.** All residential and urban BMPs recommended to meet the delisting requirement for the Mill Creek and Hawksbill Creek impairments | Residential Control<br>Measure Description | VA Cost-<br>Share<br>Practice | Mill Creek | Hawksbill<br>Creek | Total | |-------------------------------------------------------|-------------------------------|------------|--------------------|-------| | Septic Systems<br>Pump-out Program | RB-1 | 160 | 776 | 936 | | Failing Septic System | Corrections: | | | | | Septic System<br>Repair | RB-3 | 20 | 37 | 57 | | Septic System Instal-<br>lation/<br>Replacement | RB-4 | 16 | 41 | 57 | | Alternative Waste<br>Treatment System<br>Installation | RB-5 | 15 | 14 | 29 | | Straight Pipe Correcti | ions: | | | | | Septic System Instal-<br>lation/<br>Replacement | RB-4 | 3 | 3 | 6 | | Alternative Waste<br>Treatment System<br>Installation | RB-5 | 3 | 9 | 12 | | Pet Waste Practices: | | | | | | Residential Pet<br>Waste Education<br>Program | NA | 1 | 1 | 2 | | Residential Pet<br>Waste Composter | NA | 485 | 1,095 | 1,577 | | Vegetated Buffers | NA | 2 | 10 | 12 | ### **Technical Assistance** Technical assistance needed for the project was measured in full time equivalents (FTEs), with 1 FTE being equal to one full time position. 2 FTEs are needed per year during the first 5 years of the implementation period of this project. It is estimated that only 1 FTE will be needed in the last 10 years of the project. The SVSWCD will be in charge of the technical assistance during the implementation of these BMPs and will administer cost share for BMP implementation. ### **Implementation Costs** Potential funding sources available during implementation were identified during plan development. Detailed descriptions can be obtained from the SWCD, VADCR, NRCS, and VCE. Sources include: - Federal Clean Water Act 319 Incremental Funds - Virginia Agricultural Best Management Practices Cost-Share Program - Virginia Agricultural Best Management Practices Tax Credit Program - Virginia Agricultural Best Management Practices Loan Program - Virginia Small Business Environmental Assistance Fund Loan Program - Virginia Water Quality Improvement Fund - Community Development Block Grant Program - Conservation Reserve Program (CRP) - Conservation Reserve Enhancement Program (CREP) - Environmental Quality Incentives Program (EQIP) - Wildlife Habitat Incentive Program (WHIP) - Wetland Reserve Program (WRP) - Clean Water State Revolving Fund #### Timeline and Milestones The end goals of implementation are restored water quality of Hawksbill and Mill Creeks and the removal of these streams from Virginia's Section 305(b)/303(d) list. Progress toward end goals will be assessed during implementation through tracking of BMP installations and continued water quality monitoring. Expected progress in implementation is established with two types of milestones: implementation milestones and water quality milestones. Implementation milestones establish the amount of BMPs installed each year, while water quality milestones establish the corresponding improvements in water quality that can be expected. The milestones described here are intended to achieve full implementation within 15 years. Timelines with pollutant reductions expected are shown in Figures 4 and 5. **Figure 4.** Timeline for implementation in the Mill Creek watershed. **Figure 5.** Timeline for implementation in the Hawksbill Creek watershed. Following the idea of a staged implementation approach, resources and finances will be concentrated on the most cost-efficient control measures first. These measures will be the focus of Stage I. Following Stage I implementation, the Steering Committee should evaluate water quality improvements and determine how to proceed to complete implementation during Stage II. Stage II documents BMPs that are necessary for the stream to fully comply with the TMDL allocation requirements. The Department of Environmental Quality's E. coli bacterial standard states that there can be no exceedances of either the geometric mean (126 cfu/100 ml) or the instantaneous (235 cfu/100 ml) values. Complying with the standard requires BMPs that are more costly and difficult to implement. Tables 5 and 6 show the types and quantities of BMPs to be installed for each impairment during each stage. It is anticipated that the de-listing of the impaired segments from the Section 303(d) list will occur by 2022 ### **Targeting** The Mill Creek watershed was divided into 7 subwatersheds while the Hawksbill Creek watershed was divided into 28 subwatersheds (Figures 5.1 and 5.2). Targeting of critical areas for livestock fencing was accomplished through analysis of livestock population and the fencing requirements for each subwatershed. The subwatersheds were ranked in descending order based on the ratio of animals per fence length. If feasible, effort should be made to prioritize resources in the following order of subwatersheds. The Page County Water Quality Advisory Committee, a local group established by the County Board of Supervisors, is currently planning to develop a subwatershed plan for the Mill Creek watershed. While this subwatershed plan will be more detailed than the implementation plan, and will address larger land use issues within the watershed, it will provide support for the implementation plan through the collection of additional information about the watershed that will allow for better targeting of implementation efforts. In addition, it is expected that the implementation plan may serve as a tool in the development of the subwatershed plan by providing information on watershed characteristics and actions that may be taken to improve water quality. **Table 5.** Stage I and Stage II implementation goals for Mill Creek. | Control Measure | Unit | Stage I | Stage II | |--------------------------------------------------------|-----------|---------|----------| | Agricultural | | | | | Grazing Land Protection System (SL-6) | System | 10 | | | Stream Protection System (WP-2T) | System | 1 | | | Polywire Fencing (No Cost Share) | System | 5 | | | Improved Pasture Management | Acres | 3,940 | 85 | | Streamside Fence Maintenance | Feet | 769 | 1,537 | | Waste Storage Facilities/ Composting Bins | System | 1 | | | Retention Ponds - Pasture | Acres | | 2,520 | | Residential | | | | | Septic Systems Pump-out Program (RB-1)* | Program | 160 | 319 | | Septic System Repair (RB-3) | System | 20 | | | Septic System Installation/Replacement (RB-4) | System | 16 | | | Alternative Waste Treatment System Installation (RB-5) | System | 15 | | | Residential Pet Waste Program | Program | 1 | ongoing | | Urban | | | | | Residential Pet Waste Compost<br>Program | Composter | 482 | | | Vegetated Buffers | Acres | 2 | | <sup>\*</sup>Financial assistance for septic tank pumpouts in the watershed will be provided to homeowners in the form of cost share; however, it is expected that some additional funding will be necessary should all homeowners in the watershed decide to participate in the program as shown in the table above. **Table 6.** Stage I and Stage II implementation goals for Hawksbill Creek. | Control Measure | Unit | Stage I | Stage II | |--------------------------------------------------------|-----------|---------|--------------| | Agricultural | | | | | Grazing Land Protection System (SL-6) | System | 45 | | | Stream Protection System (WP-2T) | System | 6 | | | Polywire Fencing (No Cost Share) | System | 25 | | | Improved Pasture Management | Acres | 10,809 | | | Streamside Fence Maintenance | Feet | 2702 | 5,404 | | Manure Incorporation | Acres | 838 | | | Waste Storage Facilities/ Composting Bins | System | 7 | | | Vegetated buffers - cropland | Acres | 9 | | | Retention Ponds - Pasture | Acres | | 5,500 | | Residential | | | | | Septic Systems Pump-out Program (RB-1)* | Program | 776 | 1,553 | | Septic System Repair (RB-3) | System | 37 | | | Septic System Installation/Replacement (RB-4) | System | 41 | | | Alternative Waste Treatment System Installation (RB-5) | System | 14 | | | Residential Education Program | Program | 1 | | | Urban | • | • | , | | Residential Pet Waste Program | Program | 1 | ongo-<br>ing | | Residential Pet Waste Compost<br>Program | Composter | 1,095 | | | Vegetated Buffers | Acres | 10 | | <sup>\*</sup>Financial assistance for septic tank pumpouts in the watershed will be provided to homeowners in the form of cost share; however, it is expected that some additional funding will be necessary should all homeowners in the watershed decide to participate in the program as shown in the table above. **Figure 6.** Area available for streamside fencing the Mill Creek and Hawksbill Creek watersheds. ## Cost / Benefit Analysis Associated cost estimates of agricultural, residential, and urban BMPs were calculated by multiplying the unit cost by the number of units in each watershed. Tables 7 and 8 show the estimated cost of installing the recommended agricultural BMPs as \$2.5 million. Residential BMP costs sum to \$2.1 million. Urban BMPs will cost a total of \$906,000. The total cost for Stage 1 for both watersheds is \$4.80 million. It was determined by the SVSWCD and the Steering Committee that it would require \$50,000 to support the salary, benefits, travel, training, and incidentals for education of one technical FTE. With quantification analysis yielding a need for two technical FTEs per year for the first five years of implementation and one FTE per year for the subsequent ten years, the maximum total cost to provide technical assistance during implementation is expected to be \$1.0 million (Tables 7 and 8). Factoring in technical assistance costs, the total cost for full implementation in both watersheds comes to \$33.7 million (Table 9). The primary benefit of this implementation is cleaner waters in Page County, and the rest of Virginia. Specifically, fecal contamination in Hawksbill Creek and Mill Creek will be reduced to meet water quality standards and allow for safe swimming. It is difficult to gauge the impact that reducing fecal contamination will have on public health, as most cases of waterborne infection are not reported or are falsely attributed to other sources. However, because of the reductions required, the incidence of infection from fecal sources, through contact with surface waters, should be considerably reduced. Additionally, because of streambank protection that will be provided through exclusion of livestock from streams, the aquatic habitat will be improved in these waters. The vegetated buffers that are established will also serve to reduce bacteria runoff to the stream from upslope locations. In addition, as trees and shrubs in vegetated buffers grow, they serve as excellent shade sources for streams. This in turn reduces were temperature in the stream and increases dissolved oxygen, thereby improving aquatic habitat for numerous aquatic organisms. In areas where pasture management is improved, less bacteria will be washed into streams following precipitation events. Bacteria concentrations in the stream should be at or below the state standards. **Fable 7.** Costs to implement Stage I (1st 5 years) for Mill Creek and Hawksbill Creek. 1,376,000 3,424,000 Total (\$) Technical tance (\$) 125,000 375,000 Assis-28,570 62,100 **BMPs** Urban 8 Residential 1,067,000 BMPs (\$) 615,000 Agricultural | 1,920,000 BMPs (\$) 607,600 Hawksbill Creek Impairment Mill Creek Table 8. Costs to implement Stage II (2nd 10 years) for Mill Creek and Hawksbill Creek. 20,160,000 8,686,000 Total (\$) Technical tance (\$) 125,000 375,000 Assis-Urban **BMPs** 8 0 0 Residential BMPs (\$) 349,400 71,780 Agricultural 19,440,000 8,489,000 BMPs (\$) Hawksbill Creek Impairment Mill Creek 28,850,000 500,000 0 421,200 27,929,000 Total Total 4,800,000 500,000 90,670 1,682,000 2,528,000 Table 9. Total cost for implementation in the Mill Creek and Hawksbill Creek watersheds. | Impairment | Agricultural Residential | Residential | Urban | Technical | Total (\$) | |-----------------|---------------------------------|-------------|--------------|------------------------|------------| | | BMPs (\$) | BMPs (\$) | BMPs (\$) () | Assistance (\$) | | | Mill Creek | 9,097,000 | 008'989 | 28,570 | 250,000 | 10,060,000 | | Hawksbill Creek | 21,360,000 1,417,000 62,100 | 1,417,000 | 62,100 | 750,000 | 23,580,000 | | Total | 30,457,000 2,103,000 | 2,103,000 | 00,670 | 1,000,000 33,650,000 | 33,650,000 | | | | | | | | livestock illnesses can be spread through contaminated water supplies. A clean water source can prevent illnesses that reduce A clean water source has been shown to improve herd health. Fresh clean water is the primary nutrient for livestock. Many production and incur the added expense of avoidable veterinary bills. Taking the opportunity to initiate an improved pasture management system in conjunction with installing clean water supplies in winter months, increase stocking rates by 30 - 40% and, consequently, improve the profitability of the operation. Standing equipment and fed to the animal. In addition to reducing costs to producers, intensive pasture management can boost profits by allowing higher stocking rates and increasing the amount of gain per acre. In general, many of the agricultural BMPs beforage utilized directly by the grazing animal is always less costly and of higher quality than the same forage harvested with will also provide economic benefits for the producer. Improved pasture management can allow a producer to feed less hay ing recommended will provide both environmental benefits and economic benefits to the farmer. The residential programs will play an important role in improving water quality, since human waste can carry human viruses in addition to the bacterial and protozoan pathogens that all fecal matter can potentially carry with it. In terms of economic benefits to homeowners, an improved understanding of private sewage systems (including knowledge of what steps can be taken to keep them functioning properly and the need for regular maintenance) will give homeowners the tools needed for extending the life of their systems and reducing the overall cost of ownership. Proper maintenance includes: knowing the location of the system components and protecting them (e.g., not driving or parking on top of them, not planting trees where roots could damage the system), keeping hazardous chemicals out of the system, and pumping out the septic tank every three to five years. The cost of proper maintenance, as outlined here, is relatively inexpensive in comparison to repairing or replacing the entire system. Below is an example of a failing septic system. An important objective of the implementation plan is to foster continued economic vitality and strength. This objective is based on the recognition that healthy waters improve economic opportunities for Virginians, and a healthy economic base provides the resources and funding necessary to pursue restoration and enhancement activities. The agricultural and residential practices recommended in this document are expected to provide economic benefits, as well as environmental benefits, to the landowner. Specifically, alternative (clean) water sources, exclusion of livestock from streams, intensive pasture management, and private sewage system maintenance will each provide economic benefits. ## Monitoring Improvements in water quality and implementation progress will be determined through monitoring conducted by the VADEQ ambient monitoring program. This data will be supplemented by monitoring data from the National Park Service. The National Park Service stations are located in the headwaters of the Hawksbill watershed. Their data includes biological and chemical water quality parameters, which DEQ uses to determine overall water quality status, but does not use this data in its impairment assessment. Additional monitoring of coliform bacteria concentrations will be conducted in Hawksbill and Mill Creeks by citizen monitors on a yearly basis established by VADEQ. Coliscan Easygel© will be used to perform monthly monitoring of Escherichia coli (*E. coli*) bacteria. This method has been approved for screening purposes by DEQ based on a comparison study with EPA-approved methods, and has accuracy and precision comparable to membrane filtration. This monitoring data may be used to gauge the success of implementation in reducing the amount of bacteria in the streams; however, it cannot be used for the purpose of delisting the streams based on observed improvements. Volunteers have been conducting monthly sampling September 2005 through July of 2007, with high likelihood of continuing another year (Tables 10 and 11). Preliminary data from this method suggests that the bacterial impairment may not extend into the headwaters on Park property, though DEQ is obligated to assess the entire stream reach based on current stations (Table 12). Both the DEQ and Coliscan monitoring sites are shown in Figure 7. **Table 10.** Coliscan Monitoring Stations in Hawksbill Creek Watershed (overlaps FOSR and Friends of Page Valley Monitoring Sites) | Site ID | Description | |---------|-----------------------------------------| | FP-06 | Hawksbill Creek | | FP-07 | Pass Run | | FP-07B | Pass Run | | FP-08F | Hawksbill at SR 629 | | FP-08E | East Branch at Stonyman Rd | | FP-08M | Little Hawksbill at Nat'l Park Boundary | | FP-08BQ | Chub Run on Farmview Rd | | FP-18 | Dry Run at Hinton Rd (SR718) | | FP-18A | Dry Run at Brookstone Rd | Table 11. Coliscan Monitoring Stations in Mill Creek Watershed | Site Description | |--------------------------| | Stella Lane | | Mill Creek Crossroads | | Big Oak Road | | Big Oak Road Trib. | | Shen. River @ Whitehouse | | Hamburg | **Table 12.** DEQ's Monitoring Stations in the Mill and Hawksbill Watersheds | Stream Name | Station ID | Location | Frequency<br>and Type of<br>Sampling | |-------------------------|-------------|--------------------------------------------|--------------------------------------| | Mill Creek | 1BMLC000.40 | Rt. 647 Bridge | Monthly Fecal and <i>E. Coli</i> | | Hawksbill<br>Creek | 1BHKS000.96 | Rt. 648 Bridge<br>below Luray | Monthly Fecal and <i>E. Coli</i> | | Hawksbill<br>Creek | 1BHKS009.58 | Rt. 629 Bridge | Monthly Fecal and <i>E. Coli</i> | | East Hawksbill<br>Creek | 1BEHC001.18 | Rt. 642 Bridge | Monthly Fecal and <i>E. Coli</i> | | Pass Run | 1BPSS000.02 | At mouth,<br>upstream of Rt.<br>648 Bridge | Monthly Fecal and E. Coli | **Figure 7.** DEQ's Monitoring Stations in the Mill and Hawksbill Watersheds ### Education Personnel from the Shenandoah Valley SWCD will initiate contact with farmers in both watersheds to encourage the installation of agricultural BMPs. This one-on-one contact will facilitate communication of the water quality problems and the corrective actions needed. The technical staff for the IP will conduct a number of outreach activities in the watershed to raise local awareness and encourage community support and participation in reaching the implementation plan milestones. Such activities will include information exchange through newsletters, postcard mailings, field days, presentations at local Ruritan and Rotary Clubs, and a display at the Page County Fair. The technical staff will work with organizations such as Virginia Cooperative Extension to sponsor farm tours and field days. In addition, technical staff will work with the Page County Water Quality Advisory Committee, which is already engaged in a number of education and outreach activities in the watershed. The committee will provide guidance to the technical staff on outreach methods ### Stakeholders' Roles and Responsibilities Achieving the goals of this effort (i.e., improving water quality and removing these waters from the impaired waters list) is dependent on stakeholder participation. Both the local stakeholders who are charged with the implementation of control measures and the stakeholders who are responsible for overseeing our nation's human health and environmental programs must first acknowledge there is a water quality problem, and then make the needed changes in our operations, programs, and legislations to address these pollutants. The EPA has the responsibility for overseeing the various programs necessary for the success of the Clean Water Act. However, administration and enforcement of such programs falls largely to the states. In the Commonwealth of Virginia, water quality problems are dealt with through legislation, incentive programs, education, and legal actions. Currently, there are six state agencies responsible for regulating activities that impact water quality with regard to this implementation plan. These agencies include: VADEQ, VADCR, VDH, VCE, VADOF, and Virginia Department of Agriculture and Consumer Services (VDACS). VADEQ has responsibility for monitoring the waters to determine compliance with state standards, and for requiring permitted point dischargers to maintain loads within permit limits. They have the regulatory authority to levy fines and take legal action against those in violation of permits. Beginning in 1994, animal waste from confined animal facilities in excess of 300 animal units (cattle and hogs) has been managed through a Virginia general pollution abatement permit. These operations are required to implement a number of practices to prevent groundwater contamination. In response to increasing demand from the public to develop new regulations dealing with animal waste, in 1999 the Virginia General Assembly passed legislation requiring VADEQ to develop regulations for the management of poultry waste in operations having more than 200 animal units of poultry (about 20,000 chickens) (ELI, 1999). VADCR holds the responsibility for addressing nonpoint sources (NPS) of pollution. Historically, most VADCR programs have dealt with agricultural NPS pollution through education and voluntary incentive programs. These cost-share programs were originally developed to meet the needs of voluntary partial participation and not the TMDL-required 100% participation of stakeholders. To meet the needs of the TMDL program and achieve the goals set forth in the CWA, the incentive programs must be reevaluated to account for 100% participation. It should be noted that VADCR does not have regulatory authority over the majority of NPS issues addressed here. The Shenandoah Valley SWCD will provide outreach, technical and financial assistance to farmers and homeowners in the Hawksbill and Mill Creek watersheds through the Virginia Agricultural BMP Cost-Share and Tax Credit programs. Their responsibilities will include promoting implementation goals, available funding and the benefits of BMPs and providing assistance in the survey, design, layout, and approval of agricultural and residential BMPs. Education and outreach activities are a significant portion of their responsibilities. Specific education and outreach methods recommended by the working groups are described in section 5.3 of this document. The Shenandoah Valley SWCD will be eligible for technical assistance funding to support their duties Through Virginia's Agricultural Stewardship Act, the VDACS Commissioner of Agriculture has the authority to investigate claims that an agricultural producer is causing a water quality problem on a case-by-case basis (Pugh, 2001). If deemed a problem, the Commissioner can order the producer to submit an agricultural stewardship plan to the local soil and water conservation district. If a producer fails to implement the plan, corrective action can be taken which can include a civil penalty up to \$5,000 per day. The Commissioner of Agriculture can issue an emergency corrective action if runoff is likely to endanger public health, animals, fish and aquatic life, public water supply, etc. An emergency order can shut down all or part of an agricultural activity and require specific stewardship measures. The enforcement of the Agricultural Stewardship Act is entirely complaint-driven. VDH is responsible for maintaining safe drinking water measured by standards set by EPA. Their duties also include septic system regulation and, historically, regulation of biosolids land application. Like VDACS, VDH's program is complaint-driven. Complaints can range from a vent pipe odor that is not an actual sewage violation and takes very little time to investigate, to a large discharge violation that may take many weeks or longer to effect compliance. In the scheme of this TMDL IP, VDH has the responsibility of enforcing actions to correct or eliminate failed septic systems and straight pipes, respectively. State government has the authority to establish state laws that control delivery of pollutants to local waters. Local governments, in conjunction with the state, can develop ordinances involving pollution prevention measures. In addition, citizens have the right to bring litigation against persons or groups of people who can be shown to be causing some harm to the claimant. In hearing the claims of citizens in civil court, and the claims of government representatives in criminal court, the judicial branch of government also plays a significant role in the regulation of activities that impact water quality. Successful implementation depends on stakeholders taking responsibility for their role in the process. While the primary role falls on the landowner, local, state and federal agencies also have a stake in seeing that Virginia's waters are clean and provide a healthy environment for its citizens. While it is unreasonable to expect that the natural environment (e.g., streams and rivers) can be made 100% free of risk to human health, it is possible and desirable to minimize human-caused problems. Virginia's approach to correcting NPS pollution problems has been, and continues to be, encouragement of participation through education and financial incentives. However, if progress is not made toward restoring water quality using this voluntary approach, regulatory controls may be established and enforced. ### List of Acronyms BMP Best Management Practice CREP Conservation Reserve and Enhancement Program CWA Clean Water Act EPA Environmental Protection Agency EQIP Environmental Quality Incentive Program FTE Full Time Equivalent GWG Government Working Group IP Implementation Plan NPS Non Point Source Pollution NRCS Natural Resources Conservation Service RWG Residential Working Group SL-6 Grazing Land Protection System SWCD Soil and Water Conservation District TMDL Total Maximum Daily Load VADCR Virginia Department of Conservation and Recreation VADEQ Virginia Department of Environmental Quality VCE Virginia Cooperative Extension VDACS Virginia Department of Agriculture and Consumer Services VDH Virginia Department of Health VDOF Virginia Department of Forestry WP-2T Streambank Protection ### **Final Public Meeting Presentation** # **Acknowledgements** - Steering committee and working group members - Page County Water Quality Advisory Committee - Page County Health Department - Page County Department of Environmental Services - Shenandoah Valley SWCD - Natural Resource Conservation Service - VA Cooperative Extension Service - VA Department of Environmental Quality Thank you for all of your assistance and input throughout this process! # Why do we need to improve water quality in Mill and Hawksbill Creeks? - Mill and Hawksbill Creeks do not meet water quality standards for bacteria (1998) - Total Maximum Daily Load (TMDL) studies completed (2004 and 2005) - Identified the sources of bacteria in the creeks and the reductions needed # Mill and Hawksbill Creek TMDL studies showed us... Failing septic systems and straight pipes must be corrected Owners must pick up after their pets Livestock must be excluded from the creeks Bacteria running off the land during rain events must be reduced or trapped before entering the creeks # TMDL Implementation Plan Development - TMDL study tells us what we need to do, TMDL implementation plan tells us how - Outlines actions that can be taken to meet TMDL allocations - Serves as a guide for implementation efforts # Where are we now? - Kicked off the planning process in November 2006 - Working group meetings - o Agricultural - o Residential - Government - Steering committee meetings - Completion of the draft plan # What's in the plan? Stage I: What will it take to get the creeks off of the impaired waters list (de-listing)? 5-year timeline ## Assessment of Needs - Identification of best management practices to reduce bacteria - o Agricultural - o Residential - o Urban - Staff to implement the plan # Agricultural Best Management Practices Needed for De-listing - ~26 miles of streamside fencing - ~ 15,000 acres improved pasture management - ~850 acres manure incorporation - ~8 manure storage facilities/ composting bins - ~9 acres of buffers on cropland # Residential/Urban Best Management Practices Needed for De-listing - ~18 straight pipe corrections - ~140 failing septic system repairs - Septic tank pumpout prgrm - Pet waste composter prgrm - o Participation goal = 1580 households - Pet waste education prgrm - ~ 12 acres of stream buffer on urban land # Technical Assistance - 1 full time agricultural coordinator - 1 full time residential coordinator # How much is it going to cost? Agricultural Practices = \$2,527,764 Residential Practices = \$1,682,100 Urban Practices = \$ 90,670 Technical Assistance = \$ 500,000 TOTAL \$4,800,534 Approximately \$960,107 annually # What does a livestock exclusion system cost? Using and estimate of 1,866 ft of stream: - Exclusion fencing and hardened crossing = \$9,990 - Exclusion fencing, alternative water and cross fencing = \$12,917 # How about fixing a septic system? Install standard septic system = \$6,000 Install alternative system = \$22,500 Repair failing septic system repair = \$3,000 Pump out septic tank = \$250 # How are we going to pay for it? - USDA Programs CREP/EQIP - EPA Section 319 Funds - Water Quality Improvement Fund - National Fish and Wildlife Foundation Watersheds Grants - State Revolving Loan Funds - State Cost-Share Program - State Tax Credits - Landowner contributions ## In order to meet the TMDI ... - Far more would be needed to never violate the water quality standard - We are required to show what it would take: | 5-year timeline | | 15-year timeline | | | |------------------------|-------------|------------------------|--------------|--| | Agricultural Practices | \$2,528,000 | Agricultural Practices | \$30,457,241 | | | Residential Practices | \$1,682,000 | Residential Practices | \$2,103,000 | | | Urban Practices | \$90,670 | Urban Practices | \$90,670 | | | Technical Assistance | \$500,000 | Technical Assistance | \$1,000,000 | | | TOTAL | \$4,800,000 | TOTAL | \$33,651,207 | | | | | | | | # **Education and Outreach** - Partner with VA Cooperative Extension - Presentations at local Ruritan and Rotary Clubs and county fair - Work with septic system installers to distribute information to homeowners - Field days and demonstration farms - Postcard mailings # **Tracking Achievements** - Tracking of implementation: typically done jointly by DCR and SWCD - Tracking of water quality improvements: DEQ conducts water quality monitoring - Monitoring and implementation data should be correlated Photo: VA Dept. of Environmental Quality # What's Next? - 30 day comment period ends October 13th, 2007: Comments to Nesha Mizel, DCR - Plan approval by EPA and State Water Control Board - DCR will work with Soil & Water Conservation District to provide technical assistance - Implementation likely to begin in Fall/Spring 2007